
Update Summary Update

Terry COPECK, Anna KAZANTSEVA, Alistair KENNEDY,
Alex KUNADZE, Diana INKPEN, Stan SZPAKOWICZ

School of Information Technology and Engineering
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada K1N 6N5

{terry,ankazant,akennedy,diana,szpak}@site.uottawa.ca
akunadze@opentext.com

Abstract

We submitted runs from two different systems
for the update summary task at TAC 2008. One
system used Roget’s Thesaurus to determine
semantic relatedness for the purpose of summary
construction. The other system employs a variety
of heuristics, including an innovative use of the
topic headline in the assessment of semantic
similarity among sentences. Our submission to
the opinion task used only the provided text
snippets. Work continues here on a deeper
semantic representation. We will also update the
SCU-marked corpus with data from the 2008
conference.

1 Introduction

The participation of the University of Ottawa’s NLP
research group in the NIST-sponsored summarization
challenges helps us organize and structure our activities
in the area of text summarization, and lets us evaluate
our systems’ performance in the broader scope of the
summarization community. Even more than in previous
years (Copeck et al. 2006, 2007), NIST’s evaluation
effort in the latest cycle has suited to our research
agenda very well.

NIST limited resources for manual evaluation had
previously permitted a DUC participant to submit only
one set of summaries per task. This need not have
affected groups who worked together to develop a
single system. To a team like ours – composed
primarily of graduate students each of whom pursued a
unique line of research – it meant merging the results of
separate and heterogeneous systems into a single
submission to go in under our name. This is what we

have repeatedly done, averaging the sentence ratings
computed by each constituent system to arrive at an
overall sentence ranking that in some manner
represented all researchers’ contributions equally. This
was not optimal; the evaluation of performance was
necessarily imprecise.

TAC 2008 opened the door to multiple task
submissions. At the University of Ottawa, two graduate
students undertook this year to rate sentences in the test
corpus on their suitability for an update summary.
Sections 2 and 3 present their systems. For the first
time, separate results were submitted without
modification. The evaluation that TAC assessors
performed is thus highly pertinent to each of the
systems. We hope that NIST will continue to accept
multiple runs from participants in a given task.

Our team also submitted a run for the 2008 pilot
task. Section 4 presents the design of opinion summary
selection, not influenced by any ongoing research
agenda. We also regularly update the corpus marked
with Summary Content Unit [SCU] (Copeck et al.
2007) with each year’s new data. The corpus is
available to TAC participants on request to NIST. Note
that as DUC/TAC annual tasks evolve, so too does the
content of the SCU-marked corpus. That is because the
basis on which documents are annotated with SCUs has
changed over the years. Topics that reflect simple
query-focused summaries can now be considered a
closed class, with that task replaced by the current
requirement to produce update summaries.

2 Summarizing with Roget’s Thesaurus
and SCU-marked corpora

This system employs Roget’s Thesaurus as a tool for
text summarization. The motivation for using Roget’s
for this purpose comes from Kennedy and Szpakowicz
(2008) where the 1911 and 1987 versions of Roget’s
were shown to perform equally well on tasks such as
measuring semantic relatedness between words and
synonym identification. Roget’s was also shown to be a
good tool for enhancing vector based representation of
sentences and measuring sentence similarity – this
technique will be described later on. Initially the goal of
this line of research was to generate a system that could
either replace or be used to enhance the graph-matching
system of Nastase and Szpakowicz (2006), which we
used in previous years.

We rely on our SCU-marked corpus, in which
sentences known to be relevant to a particular query are
labelled with the appropriate SCU identifiers. This
information makes the corpus an excellent tool for
evaluating summarization systems that perform
sentence extraction; it can also be used for developing
systems that identify redundancy. We explore here both
these uses.

Our final system – see section 2.6 – uses the 1911
Roget’s Thesaurus to enhance a tf.idf-based ranking of
sentence relevance. A multi-layered perceptron network
is trained to identify redundancy in text. These methods
are enhanced with a few small heuristics.

2.1 The SCU-marked corpus

We used the SCU-marked corpus for testing the
systems. The corpus has been generated from the data
of previous DUC competitions. Each sentence in a
summary submitted to DUC is labelled with the SCUs
it contains. A sentence can contain 0, 1 or more than 1
SCU. These SCUs have weights from 1 to 8 for the
2005 data and 1 to 4 for the 2006 data. Since a sentence
can have multiple SCUs, it is possible for its total SCU
score to be very high. These sentences are then mapped
back into the original document set.

Sentences found in a summary that contained 0
SCUs are negative examples. Sentences found in a

summary that contained 1 or more SCUs are positive
examples. Sentences that never appeared in a summary
are unlabeled (Note: unlabeled is not the same as
neutral.) The 2005 data contain 1187 positive and 1490
negative examples. The 2006 data contain 988 positive
and 1368 negative examples. There are many unlabeled
examples, but for the most part they are ignored during
evaluation.

2.2 Roget’s Thesaurus

Roget’s is a hierarchical thesaurus. There are altogether
nine levels in the hierarchy, from top to bottom:

• Class
• Section
• Subsection
• Head Group
• Head
• Part of Speech
• Paragraph
• Semicolon Group
• Words

The words are always at the leaves of this structure.
They include nouns, verbs, adjectives, adverbs and
several other less common parts of speech such as
interjections. Clearly, this structure differs significantly
from WordNet’s.

The Open Roget’s Project (rogets.site.uottawa.ca)
has recently released a free version of Roget’s
Thesaurus. We use both this system and an analogous
system based on the proprietary 1987 data; the latter is
not in the public domain.

2.3 Sentence Ranking

Our sentences ranking is based on their predicted
relevance to the query: how likely it is that a sentence
contains a SCU from the SCU-marked corpus. We test
several methods of predicting the relevance of a
sentence. Most of them rank sentences by their
similarity to the query. The query may contain several
questions and instructions (expected contents of
answers), but our methods attempt to match the query
as a whole, not individual questions and instructions.

2.3.1 Graph Matching
Graph matching was the backbone of our last year’s
summarizer (Nastase and Szpakowicz 2006). Graph
matching works by extracting two kinds of features
from the queries and sentences. The first kind of feature
is relationships. The corpus is parsed using MiniPar
(Lin 1998) and dependency pairs are found. Two words
are related if both appear in the same dependency pair.

The second feature is made up of all noun and verb
unigrams from the query and sentences. We expanded
these unigrams by selecting synonyms of the nouns and
verbs from their dominant sense in WordNet 2.0.

Each sentence gets a score based on word and
relationship overlap. The number of overlapping words
is SW. The number of overlapping relationships is SR.
The score for the sentence is SW + weight*SR. The
weight we use is 15.

For testing purposes we re-implemented that system
(its developer has since left our group). This might not
be its perfect replication. In fact, in Nastase and
Szpakowicz (2006) another methods that mixes graph
matching and path matching was slightly better.

2.3.2 TF.IDF
Queries are weighted with term frequency only. In this
system we treat each sentence as its own document.
Inverse document frequency is the logarithm of the
number of sentences (S) divided by the number of
sentences containing term St.
Term frequency tf is simply a count of how many times
a term appears in that sentence. Each term is weighted
with tf*idf. We remove 980 stop words, as well as

punctuation, from both the queries and the sentences.
Cosine similarity determines the distance between the
query and each sentence. This is similar to what was
done in Radev et al. (2004).

2.3.3 Enhanced TF.IDF
This section describes a framework for enhancing tf.idf
using lexical resources – WordNet and Roget’s
Thesaurus. A similar sentence representation has been
tested in Kennedy and Szpakowicz (2008). The query
and sentences are represented by terms as well as

concepts from WordNet or Roget’s. Each word w is
given a score of 1. Each sense of w found in the
thesaurus (Roget’s or WordNet) is given a score of 1/X,
where X is the number of w’s senses. 1/X is added to
each of that word sense’s ancestors in the resource. In
WordNet, this means that each hypernym of the word
sense has its score increased by 1/X. In Roget’s this
means that 1/X is added to the semicolon group,
paragraph, ..., class. This creates a vector of terms as
well as concepts (from Roget’s or WordNet) that are
weighted with term frequency. Inverse document
frequency is calculated for all words, as well as
concepts, and the vectors are weighted with tf.idf. This
tf.idf enhancement has been tested three times,
using concepts that come only from Roget's 1987, only
from Roget's 1911 and only from WordNet.

2.3.4 Baselines
For comparison purposes, we experimented with two
baseline methods. One is to not bother with ranking the
sentences on any criteria. This is essentially ranking in
collection order; sentences are selected in the order they
appear in the document set.

The second baseline is to rank based on sentence
length. This should be a higher baseline since longer
sentences are more likely to contain SCUs.

2.3.5 Evaluation
We use average precision to evaluate the systems.
Average precision is calculated by first sorting all the
sentences. Next, iterate through the list from highest to
lowest: calculate the precision at each positive instance
and average those precisions.

()
sentencesrelevantofnumber

rrelrecision
AveP

N

r∑ == 1
)(*)(Pr

Precision(r) is the precision up to sentence r and

rel(r) is a binary function, 1 if sentence r is relevant
(has a SCU), and 0 otherwise (has no SCU). We
calculate average precision for every set of queries and
documents, and then take the average over each of them
for a given year. This is a macro average of the average
precision. We report results for the 2005/2006 data in
Table 1 and for the 2007 Update Summary task in

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

tS
S

idf log

Table 2. Table 2 contains document sets A, B and C as
well as their average.

System Precision:
2005

Precision:
2006

Graph matching .504 .472
tf.idf .517 .518

Roget’s 1911 .576 .525
Roget’s 1987 .565 .523

WordNet .560 .526
Random .431 .463

Sentence Length .569 .525

Table 1: Macro average precision of each system for
the 2005 and 2006 data

System A B C Avg

Graph matching .534 .448 .471 0.484
tf.idf .652 .550 .544 0.582

Roget’s 1911 .644 .560 .582 0.595
Roget’s 1987 .639 .567 .555 0.587

WordNet .639 .531 .583 0.584
Random .588 .460 .451 0.500

Sentence Length .675 .490 .581 0.582

Table 2: Macro average average precision for the
2007 Update Data

From this data it appears that tf.idf enhanced with
the 1911 Roget’s Thesaurus gives the best results on the
2005 and 2007 data sets, and is a close second behind
WordNet on the 2006 data set.

Selecting sentences based on sentence length
performs extremely well on every data set giving it a
very high score. Intuitively the more words you have in
a sentence, the higher the chance that it contains a SCU.
Sentence length performs deceivingly well. That is
because often the longest sentences can have 60 or
more words. Thus, in a 100-word summary it may be
impossible to create a summary with more than 1 or 2
sentences. Graph matching also tends to favour longer
sentences. As a result, these two methods will create
summaries with a few long sentences, while other
methods will create summaries with many shorter
sentences.

2.4 Sentence Novelty

Sentence novelty is to do with the ability to detect
whether two sentences contain the same information.
This will be used for two purposes. The first is to
identify and eliminate sentences that describe topics
that appeared in previous summaries (update
summaries). The second is to eliminate redundancy
between sentences in the same summary. These
experiments use the SCU-marked corpus and run
algorithms from Weka (Witten & Eibe 2005). All
sentences are represented using tf.idf-weighted terms
and the 1911 Roget’s Thesaurus concepts.

2.4.1 Data Set
We assume that two sentences with the same SCU
identifier contain some overlapping information. We
also assume that all other SCU-labelled sentences in the
same document set without that SCU identifier have no
overlapping information. (This may not be always true,
since two sentences with different SCU identifiers
could have some overlapping information if that
information were not assigned a SCU identifier.) The
data set is made up of all pairs of SCU-labelled
sentences from the 2005, 2006 and 2007 update
summary data sets. The positive to negative example
ratio is approximately 1:10.

2.4.2 Features
A vector of terms and a vector of concepts from Roget’s
and WordNet represent each sentence. Let the sentence
vectors be denoted S1 and S2.

A total of seven features are extracted from these
vectors. The first is just the cosine distance between the
two sentence vectors. The other six features have to do
with measuring content overlap.

If an element v appears in a vector, it has a non-zero
weight. v may appear in both vectors, with weights
weight(v,S1) and weight(v,S2). The total weight of a
sentence is

Feature 2 is the proportion of S1 that overlaps with

S2 and feature 3 is the proportion of S2 that overlaps
with S1. The following formula is for vector S1.

∑
∈

=
1

)1,(
Sv

SvweightightsentenceWe

Overlap =

min weight(v,S1),weight(v,S2)()
v ∈S1
v ∈S 2

∑

weight(v,S1)
v ∈S1
∑

Features 4 and 5 are the proportion of the weights

made up by the difference in weight for all nodes that
appear in both vectors.

Differences =

weight(v,S1) − weight(v,S2)()
v∈S1
v∈S2
weight(v,S1)>weight(v,S2)

∑

weight(v,S1)
v∈S1
∑

Features 6 and 7 are the proportion of the total

weight that comes from nodes that appear only in one
vector, but not the other.

Exclusive =

weight(v,S1)
v∈S1
v∉S2

∑

weight(v,S1)
v∈S1
∑

We ran tests with all seven features on a variety of

ML algorithms from Weka. The 2005 and 2006 data
were used for training and the 2007 data for testing.

Algorithm class prec recall F
score

ROC
Area

Pos .448 .361 .400 Naive Bayes Neg .872 .907 .889 .72

Pos .381 .472 .442 Bayes Net Neg .884 .84 .861 .733

Pos .913 .022 .043 LibSVM Neg .831 1 .907 .511

Pos .688 .145 .239 Logistic Neg .847 .986 .911 .737

Pos .735 .101 .177 Multilayer
Perceptron Neg .841 .992 .911 .738

Pos .657 .092 .161 J48 Neg .839 .99 .909 .681

Table 3: Precision, recall and area under the ROC
curve for redundancy detection

The highest F-score for the positive class was for
Bayes Nets with the 2005 and 2006 data as training
data. The highest ROC Area was for Multilayered

Perceptron. For the negative class the F-score was
almost always near 0.9. We decided to use Multilayered
Perceptron as our algorithm, since in addition to having
the highest ROC value it also had a much higher
precision for the positive class than other methods. By
doing this we are reducing the risk of misclassifying a
sentence as redundant at the cost of occasionally having
some redundant information. Thus, we lower the risk of
throwing out a good sentence, yet still have some
redundancy checking.

2.5 Heuristics

Three heuristics were applied to this system before
submission. The first is to eliminate sentences with 5
words or fewer. Although we produce no numbers to
back this up, we have observed that very short
sentences rarely contain any useful information and
often are in fact grammatically inadequate sentence
fragments.

The second heuristic is to eliminate sentences that
contain quotations. Once again we do not perform any
tests to back the underlying claim up, but we have
observed that such sentences rarely fit well into a
summary. This is because the identification of the
speaker of the quote may not be included in the
sentence and so is lost in the summary.

The third heuristic is to only consider the top 50
ranked sentences in a document set. This is done both
to save time and improve accuracy.

2.6 Final System

Our final system employs a greedy algorithm to
select the most relevant sentences. The algorithm
selects the next sentence that fits into the summary. If a
sentence is too long, or if it is judged to be redundant
by our multilayered perceptron, then it is skipped over.
This can happen with either a sentence that already
exists in the summary, or one that exists in the previous
document set (for the update summary).

The actual ranking of the sentences is based on their
score of similarity to the query, normalized by the
length of the sentence. This tends to favour many short
sentences over a few long sentences. From several user

tests we found that normalizing based on length favours
responsiveness over readability.

When generating the updated summary, comparing
each sentence in the second document set against every
sentence in the first document set can take a
prohibitively long time. That is why we select the top
50 ranked sentences from that document set to represent
it. All sentences are compared against just those 50
sentences. This works under the assumption that any
sentences in any document set that are ranked below 50
are irrelevant to the summary and so there should
ideally be no need to test them for redundancy.

The order of the sentences is determined using a
lexical chain algorithm. We choose the ordering that
maximizes the sum of the scores for each lexical chain
found. This is implemented using the algorithm in
Jarmasz and Szpakowicz (2003). It is not completely
clear that doing this will drastically improve the
readability of the summary, but it should not produce
results any worse than random ordering. It should also
be noted that every single ordering of sentences cannot
be tested in reasonable time, so we only produce our
best guess at the optimal ordering.

After the summary has been produced, an anaphora
resolution module replaces pronouns with their
referents.

2.7 Results

The results from evaluation put our system in the
bottom half of the pack on most measurements. One
area where this system does really well is the average
number of repetitions. A score of 0.635 was found for
this system, below the average of 0.791. On all other
measures this system was only slightly behind the
average.

3 Summarizing Using Headlines and
Multiple Heuristics

The update task at TAC 2008 calls for summarizing a
collection of documents with the assumption that the
reader is already familiar with the background
information in a separate collection on the same topic.
The task is more challenging than those of the previous
years. Effectively, it requires that the facts included in

the summary not only be salient, but that they also not
overlap with the user’s previous knowledge of the
topic.

The data for the update task consist of 48 topics,
with two collections of documents available for each
topic. The first collection contains ten newswire articles
with which the reader is already familiar (further
background collection). The second collection of
documents contains another ten documents that update
the previous one (further updating collection). Each
article is accompanied by a headline. The summary of
the background collection has only to reflect the
important facts found in those documents. The
summary of the updating collection needs to be such
that it does not repeat what the user would know after
reading the complete background collection.

Our system creates purely extractive summaries
without any editing. In order to select salient and novel
sentences we rely on several shallow heuristics. We use
the headlines that accompany each article and
approximate the salience of each sentence by
computing lexical overlap with the corresponding
headline. Another indicator of salience is the tf.idf
metric. To give preference to sentences that express
new facts, we modify the tf.idf measure so as to reward
the terms that have not appeared in the background
collection. Two scores that reflect these properties are
combined, and we select sentences with the highest
ranks to create a 100-word summary. In addition, we
penalize sentences that are too similar to the sentences
already found in either the background or the updating
summaries.

3.1 System Description

The data available for training and/or parameter tuning
consists of ten topics used in the DUC 2007 update
task. We use this small corpus to select the best
heuristics and to adjust the available parameters. The
best-performing combination is then applied to the test
data.

Preprocessing. Before proceeding to sentence
selection, all documents are pre-processed in the
following manner. First, the documents are tokenized
using the BALIE tool (Nadeau) and stop-words are
removed. Next, the texts are stemmed using the Lovins

stemmer (Lovins 1968), which is made available as a
part of Weka through its API (Witten and Frank 2005).

Creating background summaries. In order to
select sentences that are good candidates for inclusion
into the summary, we rank all sentences using a
combination of two scores: tf.idf score and lexical
similarity with the corresponding headline.

The tf.idf score of a term rewards terms frequent in
a collection at hand but rare in the whole corpus. tfij is
the frequency of a term wi in the topic dj, dfi is the
number of topics in the collection where wi occurs at
least once and N is the number of token types in the
compete corpus. In our setting, tf.idf score of a term
gives an idea of how central the term is in the collection
at hand.

The tf.idf score of a sentence is the sum of scores of
all its terms normalized by the sentence length.

The second score that approximates the importance
of a sentence is lexical overlap with the headline of the

corresponding article. Effectively, the headline already
is a summary of the article, so it is only logical that it
describes the most important facts in it.

The similarity with the headline is measured using
the cosine metric (Manning and Schütze 1999, p. 300):
where vectors

r
s and

r
h correspond to the candidate

sentence and the headline one.
Removal of redundancies. In addition, we use

cosine similarity to avoid repetition in the summaries.
For each candidate sentence, we measure how similar it
is to those already found in the summary. If the
similarity value exceeds 0.5, the sentence is skipped.

Creating updating summaries. The overall
algorithm for creating updating summaries is quite
similar to that for creating background ones.

The first exception is the calculation of tf.idf score.
In order to reward terms not found in the background
collection, we multiply their tf.idf score by a factor of

two. This process rewards the new terms in proportion
to their original score (terms with low tf.idf remain at
the bottom of the list).

When checking for redundancies, we look for
sentences that are too similar to those found in either
the updating or the background summary of the
collection at hand. We use the same metric and the
same threshold to achieve this end.

3.2 Results

The summaries are evaluated using several metrics.
There is no obvious way of combining them into a
single ranking. Looking across the available metrics,
however, gives one a good idea of the system’s
performance. Ours is ranked 37th and 35th when
measuring overall responsiveness for background and
updating summaries respectively (corresponding to
values of 2.23 and 1.92). The modified pyramid scores
are 3.37 for background and 2.46 for updating
summaries, corresponding to rank 42 in both cases. Our
system’s ROUGE-2 and ROUGE-SU4 scores are rather
poor.

These results are not very good and appear to
suggest that using naïve heuristics by themselves is not
sufficient to create summaries of good quality.

4 Summarizing Opinion

In addition to summarizing successive subsets of
documents on a given topic for update information,
TAC 2008 asked participants to produce summaries of
opinion. Raw materials for this task included not only
the usual collection of documents on a topic and one or
more questions about it to direct the summarization
effort, but a new intermediate resource. It was a list of
text fragments – snippets produced by QA systems or
human annotators – which address a specific topic
information need, together with the identifier of the
document from which each snippet was extracted.

We considered the effort invested in producing this
pre-selection of potentially relevant text fragments, and
the fact that this is a pilot task to which we had not had
the opportunity to devote much attention. We decided
to base our system on processing the snippet list and
ignore the base document collections from which its
entries were derived. The pilot task thus became for us

cos(
r
s ,

r
h) =

r
s •

r
h

r
s

r
h

=
sihi=1

n∑
i

si
2

i=1

n∑ hi
2

i=1

n∑

tf .idf =
(1+ log(tfij))log N

dfi

 if tfij ≥1

0 if tfij = 0

⎧

⎨
⎪

⎩ ⎪

one of attempting to produce a summary of the snippets
on a topic which best answered the question about it – a
markedly easier task.

4.1 The Process

The first step in accomplishing this was to clean up the
snippets, which were taken from fairly “dirty” blog
documents. Inspection of the first test topic identified a
number of divergences from proper English syntax1—
punctuation spaced away from the token to which it
was attached, repeated characters, incorrectly rendered
punctuation, and so on. We corrected 17 syntactic
irregularities on one pass, and three lexical ones on a
second. Capitalization was an issue in the first topic
snippet set, and tokens appearing all in upper or lower
case were converted to mixed case when instances were
found elsewhere in the blog to guide this operation. A
by-product of the cleaning operation was to eliminate
duplicates from the hash set of snippets when these
appeared in the original data or as a result of correcting
variants to the canonical well-formed form.

The second stage of processing selected the snippets
to compose the summary. We used four heuristics to
eliminate candidates from contention. 1) Snippets over
500 characters in length were removed (too long to be
focused on the topic), as were 2) those which were
approximately identical (where match was determined
approximately using the Perl amatch library), 3) those
which are subsumed by another snippet, and finally, 4)
those which appeared to incorporate more than one
sentence.

This pruning operation reduced the set of candidate
snippets to a total length of about 4,000 characters on
average across all 22 topics, well under the 14,000
characters allowed (7,000 characters were accepted per
squishy question and each topic had two squishy
questions). Lacking any better basis on which to order
these snippets, the submitted summary was written out
ordered shortest to longest, on the speculation that

1 We classified our system as “manual” on the
submission form because we based its design on
inspection of the first topic in the test data set.
Processing by the system, once implemented, was
wholly automatic.

shorter snippets would contain a higher proportion of
pertinent information.

4.2 The Outcome

NIST evaluated the opinion pilot in a manner
comparable to that applied to the main task. Six
measures were employed. Five were assessed manually:
content, responsiveness and fluency/readability (this
subsumed grammaticality, non-redundancy and
structure/ coherence). A submission’s pyramid F-score
was computed automatically. Each participant’s
average score for most2 of these measures are reported
in the file OpSumm08.avg_scores. According to its
scores for the three non-repeated measures (F-score,
overall responsiveness and overall fluency/readability),
our submission was ranked first in a tie with that of
participant 9. Averaging all scores in the file including
the three submeasures of fluency/readability ranked us
8th. On the single score of responsiveness which we
ourselves deem key, we scored 4th.

This rather surprising performance likely highlights
the importance of the snippet selection procedure in
producing opinion summaries. It certainly is not due to
the simple correction operations and filtering heuristics
of which our system is composed – though cleaning up
the snippets probably did improve their readability.

5 Future Work

Goals for the next year are to continue to find occasions
when we can conduct experiments in which our team
itself judges summary responsiveness and fluency. That
should allow a system’s developer to improve its
sentence selection process either through trial and error
or by iterative refinement.

We will continue to update the corpus of SCU-
marked topics with new material as it becomes
available, and to use it to guide future development of
summarization systems at the University of Ottawa as
appropriate.

2 Content per se is absent, while measures are included
both of overall fluency/readability, and three of its
constituents: grammaticality, non-redundancy and
structure-and-coherence.

Finally, we hope to move towards employing
selection algorithms which are based on deeper
semantic knowledge of a text as a team member’s
research in this area comes to fruition.

Acknowledgment

Partial support for this work comes from the Natural
Sciences and Engineering Research Council of Canada.

References

Copeck, Terry, Diana Inkpen, Anna Kazantseva,
Alistair Kennedy, Darren Kipp and Stan
Szpakowicz. 2007. Catch What You Can.
Proceedings of the Workshop on Automatic
Summarization (DUC 2007), HLT/NAACL-2007.

Copeck, Terry, Diana Inkpen, Anna Kazantseva,
Alistair Kennedy, Darren Kipp, Vivi Nastase and
Stan Szpakowicz. 2006. Leveraging DUC.
Proceedings of the Workshop on Automatic
Summarization (DUC 2006), HLT/NAACL-2006.

Copeck, Terry and Stan Szpakowicz. 2005. Leveraging
Pyramids. Proceedings of the Workshop on
Automatic Summarization (DUC 2005),
HLT/EMNLP-2005.

Jarmasz, Mario and Stan Szpakowicz. 2003.
Not As Easy As It Seems: Automating the
Construction of Lexical Chains Using Roget’s
Thesaurus. Proceedings of the 16th Canadian

Conference on Artificial Intelligence (AI 2003),
Halifax, Canada, June, 544–549.

Kennedy, Alistair and Stan Szpakowicz. 2008.
Evaluating Roget’s Thesauri. Proceedings of ACL-
2008, 416-424.

Lin, D. 1998. Dependency-based Evaluation of
MINIPAR. In Proceedings of the workshop on the
Evaluation of Parsing Systems, First International
Conference on Language Resources and Evaluation

Lovins, J.B. 1968. Development of a Stemming
Algorithm. Mechanical Translation and
Computational Linguistics, 11, 22-31.

Manning, C.D and Schütze, H. 1999. Foundations of
statistical natural language processing, MIT Press,
Cambridge, MA.

Nadeau, D. Multilingual Information Extraction from
Text with Machine Learning and Natural Language
Techniques. Technical report.
sourceforge.net/docman/display_doc.php?docid=267
84&group_id=124581.

Nastase, Vivi and Stan Szpakowicz. 2006. A Study of
Two Graph Algorithms in Topic-driven
Summarization. Proceedings of the Workshop on
Graph-based Algorithms for Natural Language
Processing (TextGraphs2006), HLT/NAACL-2006.

Radev, Dragomir R., Hongyan Jing, Małgorzata Styś,
and Daniel Tam. Centroid-based summarization of
multiple documents. Information Processing and
Management, 40:919–938, December 2004.

Witten, Ian H. and Eibe Frank. 2005. Data Mining:
Practical machine learning tools and techniques,
2nd ed. Morgan Kaufmann, San Francisco, 2005.

